

Getting Started

[image: _images/bolalob_logo.png]

Hello welcome to documentation bolalob!
We are excited that you want to learn bolalob environment and how we build sites bolalob.

Get Started Tutorial teaches you how to :

	About bolalob

	Prerequisite bolalob environment

	How to run a project in localhost

	How to running multiple projects in one server localhost

Table Of Contents

Keyword

	About Bolalob

	Prerequisite bolalob environment
	Windows

	Linux

	MacOS

	How to running project in your localhost

	How to running multiple projects in one server localhost

About Bolalob

Bolalob.com is a community media that thoroughly discusses all related to Futsal and Football. Starting from match and coverage to Futsal lifestyle. In addition to discussing Futsal with Futsal lovers community, Bolalob also provides some important information about Spanish League, English League, and Italian League. We always prioritize the best and most original Futsal content quality, for Bolalob loyal lovers.

Bolalob have several category that is:

	Futsal

	Football

	Competition

	Gallery

	TV / Video

Prerequisite bolalob environment

Before you starting running the bolalob sites in your computer, you must check and install several application, to see that you have qualify hardware and software need for running the project on your operating system. The requirements for each type of operating system are detailed in the following sections:

Windows

	Install Git Version 2.17.1 up

	Install Java Development Kit (JDK) Version 7 up to 8

	Install PostgreSQL Database

	Install IDE Spring Tools Suite or others IDE

	Setup Thymeleaf Framework (Front-end)

	Setup Spring Framework (Backend)

Linux

	Install Git Version 2.17.1 up

	Install Java Development Kit (JDK) Version 7 up to 8

	Install PostgreSQL Database

	Install IDE Spring Tools Suite or others IDE

	Setup Thymeleaf Framework (Front-end)

	Setup Spring Framework (Backend)

MacOS

	Install Git Version 2.17.1 up

	Install Java Development Kit (JDK) Version 7 up to 8

	Install PostgreSQL Database

	Install IDE Spring Tools Suite or others IDE

	Setup Thymeleaf Framework (Front-end)

	Setup Spring Framework (Backend)

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Warning

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Danger

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

How to running project in your localhost

If you have been installing several Prerequisite previously which is explained on the above, for running the project in the localhost, follow this step will be explained as such:

	Firstly you should sign into your GitHub account, for clone or download the project bolalob which is in Github.

[image: _images/github_bolalob.png]

	After success sign into your GitHub, clone the project you will running in localhost with way copy the link url from github.

	After you copy link URL from Github, please open your git or command line.

	Sign in to your command line or git, and typing the command line this for make a folder.

$ mkdir folder_name

	And typing this command for navigate to your folder previously you create.

$ cd d:\folder_name

	After you have make a folder for your project, Typing this command on your git. For download or clone the project to your computer.

$ git clone URL_link_from_github

	And after success to clone you project to your computer, for remote the project localhost with project live in github you can type your command as such:

$ git remote add origin URL_link_from_github

	After successfully clone the project you should setup and Input files application.properties in your project.

	After you have been finding the file folder project and setup application.properties, next you can type the command line this for running the project in your server localhost.

$ gradle clean bootRun

	If success, once you type command previously the gradle can be processed and appearing where your project run. Example the project run on https://localhost:8000/ it is projected running on localhost with port 8000.

	You can type the URL link in your browser.

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Warning

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Danger

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

How to running multiple projects in one server localhost

On bolalob, we have several projects that are bolalob sites, bolalob TV and bolalob SI.
If we want running the project together on localhost, first you should setup the file build.gradle for example:

	Open file build.gradle bolalob-sites, edit file setup and change the number of server.port.

[image: _images/build_gradle_port1.png]

	Open file build.gradle bolalob-TV, edit file setup and change the number of server.port.

[image: _images/build_gradle_port2.png]

	Open file build.gradle bolalob-SI, edit file setup and change the number of server.port.

[image: _images/build_gradle_port3.png]

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Warning

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Danger

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	account, [1]

 	
 	address, [1]

B

 	
 	balance, [1]

 	
 	block, [1]

C

 	
 	callcode, [1]

 	
 	coin, [1]

 	contract creation, [1]

D

 	
 	delegatecall, [1]

 	
 	Documentation

E

 	
 	ethereum virtual machine, [1]

 	
 	event, [1]

 	evm, [1]

F

 	
 	
 function

 	call, [1]

G

 	
 	gas, [1]

 	
 	gas price, [1]

I

 	
 	instruction, [1]

L

 	
 	library, [1]

 	
 	log, [1]

M

 	
 	mapping, [1]

 	
 	memory, [1]

 	message call, [1]

P

 	
 	
 Python Enhancement Proposals

 	PEP 287

R

 	
 	Reading

 	
 	
 RFC

 	RFC 2822

S

 	
 	selfdestruct, [1]

 	stack, [1]

 	
 	storage, [1], [2], [3]

 	subcurrency, [1]

T

 	
 	transaction, [1], [2], [3]

W

 	
 	Writing

Testing Document

	List 1

	List 1

	List 1

	List 1

	List 1

he first line simply tells that the source code is written for
Solidity version 0.4.0 or anything newer that does not break functionality
(up to, but not including, version 0.5.0). This is to ensure that the
contract does not suddenly behave differently with a new compiler version. The keyword pragma is called that because, in general,
pragmas are instructions for the compiler about how to treat the
source code (e.g. pragma once [https://en.wikipedia.org/wiki/Pragma_once]).

A contract in the sense of Solidity is a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum
blockchain. The line uint storedData; declares a state variable called storedData of
type uint (unsigned integer of 256 bits). You can think of it as a single slot
in a database that can be queried and altered by calling functions of the
code that manages the database. In the case of Ethereum, this is always the owning
contract. And in this case, the functions set and get can be used to modify
or retrieve the value of the variable.

Documentation Bolalob

About bolalob

Bolalob.com is a community media that thoroughly discusses all related to Futsal. Starting from match and coverage to Futsal lifestyle. In addition to discussing Futsal with Futsal lovers community, Bolalob also provides some important information about Spanish League, English League and Italian League. We always prioritize the best and most original Futsal content quality, for Bolalob loyal lovers.

Requirements

Before you starting development, you must check to see that you have the correct hardware and software necessary for using several requirements on your operating system. The requirements for each type of operating system are detailed in the following sections:

Windows

	Git Version 2.17.1

	Java Development Kit (JDK) Version 7 up to 8

	Postgresql Database

	IDE Spring Tools Suite

	Thymeleaf

	Spring Framework

Linux

	Git Version 2.17.1

	Java Development Kit (JDK) Version 7 up to 8

	Postgresql Database

	IDE Spring Tools Suite

	Thymeleaf

	Spring Framework

MacOS

	Git Version 2.17.1

	Java Development Kit (JDK) Version 7 up to 8

	Postgresql Database

	IDE Spring Tools Suite

	Thymeleaf

	Spring Framework

Note

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Warning

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Danger

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat.

Translations

This documentation is translated into several languages by community volunteers, but the English version stands as a reference.

	Chinese [https://bolalob.com/] (in progress)

	Spanish [https://bolalob.com] (in progress)

	Russian [https://bolalob.com] (in progress)

	Korean [https://bolalob.com] (in progress)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat. Etiam quis porttitor ipsum, facilisis venenatis massa. Fusce mi erat, ornare ut faucibus tincidunt, placerat ac nisl. Proin molestie leo vitae augue facilisis euismod. Quisque auctor est eu condimentum faucibus. Nunc vestibulum elit eu urna posuere viverra. Proin maximus libero in tellus tempus, ut bibendum sem lacinia. Pellentesque massa velit, ullamcorper rutrum aliquet in, dignissim non tortor. Integer finibus semper libero, non finibus arcu vehicula malesuada. Ut eu erat at nisl euismod ullamcorper. Nam euismod nunc diam, sit amet aliquet urna posuere a.

Nunc ut sollicitudin quam, vitae iaculis erat. Suspendisse rutrum id dolor sit amet tristique. Quisque mi velit, accumsan at iaculis vitae, lacinia eu ipsum. Nulla mauris purus, viverra in ornare quis, facilisis eget nisi. Sed finibus congue dui sit amet varius. Sed pellentesque vulputate ex nec pharetra. Maecenas nunc ipsum, porta a consectetur eu, blandit a elit. Fusce a nibh lectus.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat. Etiam quis porttitor ipsum, facilisis venenatis massa. Fusce mi erat, ornare ut faucibus tincidunt, placerat ac nisl. Proin molestie leo vitae augue facilisis euismod. Quisque auctor est eu condimentum faucibus. Nunc vestibulum elit eu urna posuere viverra. Proin maximus libero in tellus tempus, ut bibendum sem lacinia. Pellentesque massa velit, ullamcorper rutrum aliquet in, dignissim non tortor. Integer finibus semper libero, non finibus arcu vehicula malesuada. Ut eu erat at nisl euismod ullamcorper. Nam euismod nunc diam, sit amet aliquet urna posuere a.

Nunc ut sollicitudin quam, vitae iaculis erat. Suspendisse rutrum id dolor sit amet tristique. Quisque mi velit, accumsan at iaculis vitae, lacinia eu ipsum. Nulla mauris purus, viverra in ornare quis, facilisis eget nisi. Sed finibus congue dui sit amet varius. Sed pellentesque vulputate ex nec pharetra. Maecenas nunc ipsum, porta a consectetur eu, blandit a elit. Fusce a nibh lectus.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam sodales mi et neque pharetra, sit amet volutpat odio aliquam. Suspendisse at sollicitudin erat. Etiam quis porttitor ipsum, facilisis venenatis massa. Fusce mi erat, ornare ut faucibus tincidunt, placerat ac nisl. Proin molestie leo vitae augue facilisis euismod. Quisque auctor est eu condimentum faucibus. Nunc vestibulum elit eu urna posuere viverra. Proin maximus libero in tellus tempus, ut bibendum sem lacinia. Pellentesque massa velit, ullamcorper rutrum aliquet in, dignissim non tortor. Integer finibus semper libero, non finibus arcu vehicula malesuada. Ut eu erat at nisl euismod ullamcorper. Nam euismod nunc diam, sit amet aliquet urna posuere a.

Nunc ut sollicitudin quam, vitae iaculis erat. Suspendisse rutrum id dolor sit amet tristique. Quisque mi velit, accumsan at iaculis vitae, lacinia eu ipsum. Nulla mauris purus, viverra in ornare quis, facilisis eget nisi. Sed finibus congue dui sit amet varius. Sed pellentesque vulputate ex nec pharetra. Maecenas nunc ipsum, porta a consectetur eu, blandit a elit. Fusce a nibh lectus.

Contents

Keyword

	Introduction Bolalob I
	A Simple Smart Contract
	Storage

	Subcurrency Example

	Blockchain Basics
	Transactions

	Blocks

	The Ethereum Virtual Machine
	Overview

	Accounts

	Transactions

	Gas

	Storage, Memory and the Stack

	Instruction Set

	Message Calls

	Delegatecall / Callcode and Libraries

	Logs

	Create

	Self-destruct

	Introduction Bolalob II
	A Simple Smart Contract
	Storage

	Subcurrency Example

	Blockchain Basics
	Transactions

	Blocks

	The Ethereum Virtual Machine
	Overview

	Accounts

	Transactions

	Gas

	Storage, Memory and the Stack

	Instruction Set

	Message Calls

	Delegatecall / Callcode and Libraries

	Logs

	Create

	Self-destruct

	Introduction Bolalob III
	Code Sample I

	Code Sample II

	Introduction Bolalob IV
	Code Sample I

	Code Sample II

	Paragraph Level Markup
	Inline Markup

	Math

	Meta

	Blocks
	Literal Blocks

	Line Blocks

	Block Quotes

	Doctest Blocks

	Code Blocks
	Emphasized lines with line numbers

	Sidebar
	Code with Sidebar

	References
	Footnotes

	Citations

	Glossary

	Targets

	Directives
	Contents

	Centered text

	Images & Figures
	Images

	Figures

	Admonitions

	Topics, Sidebars, and Rubrics

	Target Footnotes

	Replacement Text

	Compound Paragraph

	Download Links

	Testing Document

Introduction Bolalob I

A Simple Smart Contract

Let us begin with the most basic example. It is fine if you do not understand everything
right now, we will go into more detail later.

Storage

contract SimpleStorage {
 uint storedData;

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint) {
 return storedData;
 }
}

The first line simply tells that the source code is written for
Solidity version 0.4.0 or anything newer that does not break functionality
(up to, but not including, version 0.5.0). This is to ensure that the
contract does not suddenly behave differently with a new compiler version. The keyword pragma is called that because, in general,
pragmas are instructions for the compiler about how to treat the
source code (e.g. pragma once [https://en.wikipedia.org/wiki/Pragma_once]).

A contract in the sense of Solidity is a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum
blockchain. The line uint storedData; declares a state variable called storedData of
type uint (unsigned integer of 256 bits). You can think of it as a single slot
in a database that can be queried and altered by calling functions of the
code that manages the database. In the case of Ethereum, this is always the owning
contract. And in this case, the functions set and get can be used to modify
or retrieve the value of the variable.

To access a state variable, you do not need the prefix this. as is common in
other languages.

This contract does not do much yet (due to the infrastructure
built by Ethereum) apart from allowing anyone to store a single number that is accessible by
anyone in the world without a (feasible) way to prevent you from publishing
this number. Of course, anyone could just call set again with a different value
and overwrite your number, but the number will still be stored in the history
of the blockchain. Later, we will see how you can impose access restrictions
so that only you can alter the number.

Note

All identifiers (contract names, function names and variable names) are restricted to
the ASCII character set. It is possible to store UTF-8 encoded data in string variables.

Warning

Be careful with using Unicode text, as similar looking (or even identical) characters can
have different code points and as such will be encoded as a different byte array.

Subcurrency Example

The following contract will implement the simplest form of a
cryptocurrency. It is possible to generate coins out of thin air, but
only the person that created the contract will be able to do that (it is trivial
to implement a different issuance scheme).
Furthermore, anyone can send coins to each other without any need for
registering with username and password — all you need is an Ethereum keypair.

contract Coin {
 // The keyword "public" makes those variables
 // readable from outside.
 address public minter;
 mapping (address => uint) public balances;

 // Events allow light clients to react to
 // changes efficiently.
 event Sent(address from, address to, uint amount);

 // This is the constructor whose code is
 // run only when the contract is created.
 constructor() public {
 minter = msg.sender;
 }

 function mint(address receiver, uint amount) public {
 if (msg.sender != minter) return;
 balances[receiver] += amount;
 }

 function send(address receiver, uint amount) public {
 if (balances[msg.sender] < amount) return;
 balances[msg.sender] -= amount;
 balances[receiver] += amount;
 emit Sent(msg.sender, receiver, amount);
 }
}

This contract introduces some new concepts, let us go through them one by one.

The line address public minter; declares a state variable of type address
that is publicly accessible. The address type is a 160-bit value
that does not allow any arithmetic operations. It is suitable for
storing addresses of contracts or keypairs belonging to external
persons. The keyword public automatically generates a function that
allows you to access the current value of the state variable
from outside of the contract.
Without this keyword, other contracts have no way to access the variable.
The code of the function generated by the compiler is roughly equivalent
to the following

function minter() returns (address) { return minter; }

Of course, adding a function exactly like that will not work
because we would have a
function and a state variable with the same name, but hopefully, you
get the idea - the compiler figures that out for you.

The next line, mapping (address => uint) public balances; also
creates a public state variable, but it is a more complex datatype.
The type maps addresses to unsigned integers.
Mappings can be seen as hash tables [https://en.wikipedia.org/wiki/Hash_table] which are
virtually initialized such that every possible key exists and is mapped to a
value whose byte-representation is all zeros. This analogy does not go
too far, though, as it is neither possible to obtain a list of all keys of
a mapping, nor a list of all values. So either keep in mind (or
better, keep a list or use a more advanced data type) what you
added to the mapping or use it in a context where this is not needed,
like this one. The getter function created by the public keyword
is a bit more complex in this case. It roughly looks like the
following

function balances(address _account) public view returns (uint) {
 return balances[_account];
}

As you see, you can use this function to easily query the balance of a
single account.

The line event Sent(address from, address to, uint amount); declares
a so-called “event” which is emitted in the last line of the function
send. User interfaces (as well as server applications of course) can
listen for those events being emitted on the blockchain without much
cost. As soon as it is emitted, the listener will also receive the
arguments from, to and amount, which makes it easy to track
transactions. In order to listen for this event, you would use

Coin.Sent().watch({}, '', function(error, result) {
 if (!error) {
 console.log("Coin transfer: " + result.args.amount +
 " coins were sent from " + result.args.from +
 " to " + result.args.to + ".");
 console.log("Balances now:\n" +
 "Sender: " + Coin.balances.call(result.args.from) +
 "Receiver: " + Coin.balances.call(result.args.to));
 }
})

Note how the automatically generated function balances is called from
the user interface.

The special function Coin is the
constructor which is run during creation of the contract and
cannot be called afterwards. It permanently stores the address of the person creating the
contract: msg (together with tx and block) is a magic global variable that
contains some properties which allow access to the blockchain. msg.sender is
always the address where the current (external) function call came from.

Finally, the functions that will actually end up with the contract and can be called
by users and contracts alike are mint and send.
If mint is called by anyone except the account that created the contract,
nothing will happen. On the other hand, send can be used by anyone (who already
has some of these coins) to send coins to anyone else. Note that if you use
this contract to send coins to an address, you will not see anything when you
look at that address on a blockchain explorer, because the fact that you sent
coins and the changed balances are only stored in the data storage of this
particular coin contract. By the use of events it is relatively easy to create
a “blockchain explorer” that tracks transactions and balances of your new coin.

Blockchain Basics

Blockchains as a concept are not too hard to understand for programmers. The reason is that
most of the complications (mining, hashing [https://en.wikipedia.org/wiki/Cryptographic_hash_function], elliptic-curve cryptography [https://en.wikipedia.org/wiki/Elliptic_curve_cryptography], peer-to-peer networks [https://en.wikipedia.org/wiki/Peer-to-peer], etc.)
are just there to provide a certain set of features and promises. Once you accept these
features as given, you do not have to worry about the underlying technology - or do you have
to know how Amazon’s AWS works internally in order to use it?

Transactions

A blockchain is a globally shared, transactional database.
This means that everyone can read entries in the database just by participating in the network.
If you want to change something in the database, you have to create a so-called transaction
which has to be accepted by all others.
The word transaction implies that the change you want to make (assume you want to change
two values at the same time) is either not done at all or completely applied. Furthermore,
while your transaction is applied to the database, no other transaction can alter it.

As an example, imagine a table that lists the balances of all accounts in an
electronic currency. If a transfer from one account to another is requested,
the transactional nature of the database ensures that if the amount is
subtracted from one account, it is always added to the other account. If due
to whatever reason, adding the amount to the target account is not possible,
the source account is also not modified.

Furthermore, a transaction is always cryptographically signed by the sender (creator).
This makes it straightforward to guard access to specific modifications of the
database. In the example of the electronic currency, a simple check ensures that
only the person holding the keys to the account can transfer money from it.

Blocks

One major obstacle to overcome is what, in Bitcoin terms, is called a “double-spend attack”:
What happens if two transactions exist in the network that both want to empty an account,
a so-called conflict?

The abstract answer to this is that you do not have to care. An order of the transactions
will be selected for you, the transactions will be bundled into what is called a “block”
and then they will be executed and distributed among all participating nodes.
If two transactions contradict each other, the one that ends up being second will
be rejected and not become part of the block.

These blocks form a linear sequence in time and that is where the word “blockchain”
derives from. Blocks are added to the chain in rather regular intervals - for
Ethereum this is roughly every 17 seconds.

As part of the “order selection mechanism” (which is called “mining”) it may happen that
blocks are reverted from time to time, but only at the “tip” of the chain. The more
blocks that are added on top, the less likely it is. So it might be that your transactions
are reverted and even removed from the blockchain, but the longer you wait, the less
likely it will be.

The Ethereum Virtual Machine

Overview

The Ethereum Virtual Machine or EVM is the runtime environment
for smart contracts in Ethereum. It is not only sandboxed but
actually completely isolated, which means that code running
inside the EVM has no access to network, filesystem or other processes.
Smart contracts even have limited access to other smart contracts.

Accounts

There are two kinds of accounts in Ethereum which share the same
address space: External accounts that are controlled by
public-private key pairs (i.e. humans) and contract accounts which are
controlled by the code stored together with the account.

The address of an external account is determined from
the public key while the address of a contract is
determined at the time the contract is created
(it is derived from the creator address and the number
of transactions sent from that address, the so-called “nonce”).

Regardless of whether or not the account stores code, the two types are
treated equally by the EVM.

Every account has a persistent key-value store mapping 256-bit words to 256-bit
words called storage.

Furthermore, every account has a balance in
Ether (in “Wei” to be exact) which can be modified by sending transactions that
include Ether.

Transactions

A transaction is a message that is sent from one account to another
account (which might be the same or the special zero-account, see below).
It can include binary data (its payload) and Ether.

If the target account contains code, that code is executed and
the payload is provided as input data.

If the target account is the zero-account (the account with the
address 0), the transaction creates a new contract.
As already mentioned, the address of that contract is not
the zero address but an address derived from the sender and
its number of transactions sent (the “nonce”). The payload
of such a contract creation transaction is taken to be
EVM bytecode and executed. The output of this execution is
permanently stored as the code of the contract.
This means that in order to create a contract, you do not
send the actual code of the contract, but in fact code that
returns that code when executed.

Note

While a contract is being created, its code is still empty.
Because of that, you should not call back into the
contract under construction until its constructor has
finished executing.

Gas

Upon creation, each transaction is charged with a certain amount of gas,
whose purpose is to limit the amount of work that is needed to execute
the transaction and to pay for this execution. While the EVM executes the
transaction, the gas is gradually depleted according to specific rules.

The gas price is a value set by the creator of the transaction, who
has to pay gas_price * gas up front from the sending account.
If some gas is left after the execution, it is refunded in the same way.

If the gas is used up at any point (i.e. it is negative),
an out-of-gas exception is triggered, which reverts all modifications
made to the state in the current call frame.

Storage, Memory and the Stack

Each account has a persistent memory area which is called storage.
Storage is a key-value store that maps 256-bit words to 256-bit words.
It is not possible to enumerate storage from within a contract
and it is comparatively costly to read and even more so, to modify
storage. A contract can neither read nor write to any storage apart
from its own.

The second memory area is called memory, of which a contract obtains
a freshly cleared instance for each message call. Memory is linear and can be
addressed at byte level, but reads are limited to a width of 256 bits, while writes
can be either 8 bits or 256 bits wide. Memory is expanded by a word (256-bit), when
accessing (either reading or writing) a previously untouched memory word (ie. any offset
within a word). At the time of expansion, the cost in gas must be paid. Memory is more
costly the larger it grows (it scales quadratically).

The EVM is not a register machine but a stack machine, so all
computations are performed on an area called the stack. It has a maximum size of
1024 elements and contains words of 256 bits. Access to the stack is
limited to the top end in the following way:
It is possible to copy one of
the topmost 16 elements to the top of the stack or swap the
topmost element with one of the 16 elements below it.
All other operations take the topmost two (or one, or more, depending on
the operation) elements from the stack and push the result onto the stack.
Of course it is possible to move stack elements to storage or memory,
but it is not possible to just access arbitrary elements deeper in the stack
without first removing the top of the stack.

Instruction Set

The instruction set of the EVM is kept minimal in order to avoid
incorrect implementations which could cause consensus problems.
All instructions operate on the basic data type, 256-bit words.
The usual arithmetic, bit, logical and comparison operations are present.
Conditional and unconditional jumps are possible. Furthermore,
contracts can access relevant properties of the current block
like its number and timestamp.

Message Calls

Contracts can call other contracts or send Ether to non-contract
accounts by the means of message calls. Message calls are similar
to transactions, in that they have a source, a target, data payload,
Ether, gas and return data. In fact, every transaction consists of
a top-level message call which in turn can create further message calls.

A contract can decide how much of its remaining gas should be sent
with the inner message call and how much it wants to retain.
If an out-of-gas exception happens in the inner call (or any
other exception), this will be signalled by an error value put onto the stack.
In this case, only the gas sent together with the call is used up.
In Solidity, the calling contract causes a manual exception by default in
such situations, so that exceptions “bubble up” the call stack.

As already said, the called contract (which can be the same as the caller)
will receive a freshly cleared instance of memory and has access to the
call payload - which will be provided in a separate area called the calldata.
After it has finished execution, it can return data which will be stored at
a location in the caller’s memory preallocated by the caller.

Calls are limited to a depth of 1024, which means that for more complex
operations, loops should be preferred over recursive calls.

Delegatecall / Callcode and Libraries

There exists a special variant of a message call, named delegatecall
which is identical to a message call apart from the fact that
the code at the target address is executed in the context of the calling
contract and msg.sender and msg.value do not change their values.

This means that a contract can dynamically load code from a different
address at runtime. Storage, current address and balance still
refer to the calling contract, only the code is taken from the called address.

This makes it possible to implement the “library” feature in Solidity:
Reusable library code that can be applied to a contract’s storage, e.g. in
order to implement a complex data structure.

Logs

It is possible to store data in a specially indexed data structure
that maps all the way up to the block level. This feature called logs
is used by Solidity in order to implement events.
Contracts cannot access log data after it has been created, but they
can be efficiently accessed from outside the blockchain.
Since some part of the log data is stored in bloom filters [https://en.wikipedia.org/wiki/Bloom_filter], it is
possible to search for this data in an efficient and cryptographically
secure way, so network peers that do not download the whole blockchain
(“light clients”) can still find these logs.

Create

Contracts can even create other contracts using a special opcode (i.e.
they do not simply call the zero address). The only difference between
these create calls and normal message calls is that the payload data is
executed and the result stored as code and the caller / creator
receives the address of the new contract on the stack.

Self-destruct

The only possibility that code is removed from the blockchain is
when a contract at that address performs the selfdestruct operation.
The remaining Ether stored at that address is sent to a designated
target and then the storage and code is removed from the state.

Warning

Even if a contract’s code does not contain a call to selfdestruct,
it can still perform that operation using delegatecall or callcode.

Note

The pruning of old contracts may or may not be implemented by Ethereum
clients. Additionally, archive nodes could choose to keep the contract storage
and code indefinitely.

Note

Currently external accounts cannot be removed from the state.

Introduction Bolalob II

A Simple Smart Contract

Let us begin with the most basic example. It is fine if you do not understand everything
right now, we will go into more detail later.

Storage

contract SimpleStorage {
 uint storedData;

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint) {
 return storedData;
 }
}

The first line simply tells that the source code is written for
Solidity version 0.4.0 or anything newer that does not break functionality
(up to, but not including, version 0.5.0). This is to ensure that the
contract does not suddenly behave differently with a new compiler version. The keyword pragma is called that because, in general,
pragmas are instructions for the compiler about how to treat the
source code (e.g. pragma once [https://en.wikipedia.org/wiki/Pragma_once]).

A contract in the sense of Solidity is a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum
blockchain. The line uint storedData; declares a state variable called storedData of
type uint (unsigned integer of 256 bits). You can think of it as a single slot
in a database that can be queried and altered by calling functions of the
code that manages the database. In the case of Ethereum, this is always the owning
contract. And in this case, the functions set and get can be used to modify
or retrieve the value of the variable.

To access a state variable, you do not need the prefix this. as is common in
other languages.

This contract does not do much yet (due to the infrastructure
built by Ethereum) apart from allowing anyone to store a single number that is accessible by
anyone in the world without a (feasible) way to prevent you from publishing
this number. Of course, anyone could just call set again with a different value
and overwrite your number, but the number will still be stored in the history
of the blockchain. Later, we will see how you can impose access restrictions
so that only you can alter the number.

Note

All identifiers (contract names, function names and variable names) are restricted to
the ASCII character set. It is possible to store UTF-8 encoded data in string variables.

Warning

Be careful with using Unicode text, as similar looking (or even identical) characters can
have different code points and as such will be encoded as a different byte array.

Subcurrency Example

The following contract will implement the simplest form of a
cryptocurrency. It is possible to generate coins out of thin air, but
only the person that created the contract will be able to do that (it is trivial
to implement a different issuance scheme).
Furthermore, anyone can send coins to each other without any need for
registering with username and password — all you need is an Ethereum keypair.

contract Coin {
 // The keyword "public" makes those variables
 // readable from outside.
 address public minter;
 mapping (address => uint) public balances;

 // Events allow light clients to react to
 // changes efficiently.
 event Sent(address from, address to, uint amount);

 // This is the constructor whose code is
 // run only when the contract is created.
 constructor() public {
 minter = msg.sender;
 }

 function mint(address receiver, uint amount) public {
 if (msg.sender != minter) return;
 balances[receiver] += amount;
 }

 function send(address receiver, uint amount) public {
 if (balances[msg.sender] < amount) return;
 balances[msg.sender] -= amount;
 balances[receiver] += amount;
 emit Sent(msg.sender, receiver, amount);
 }
}

This contract introduces some new concepts, let us go through them one by one.

The line address public minter; declares a state variable of type address
that is publicly accessible. The address type is a 160-bit value
that does not allow any arithmetic operations. It is suitable for
storing addresses of contracts or keypairs belonging to external
persons. The keyword public automatically generates a function that
allows you to access the current value of the state variable
from outside of the contract.
Without this keyword, other contracts have no way to access the variable.
The code of the function generated by the compiler is roughly equivalent
to the following:

function minter() returns (address) { return minter; }

Of course, adding a function exactly like that will not work
because we would have a
function and a state variable with the same name, but hopefully, you
get the idea - the compiler figures that out for you.

The next line, mapping (address => uint) public balances; also
creates a public state variable, but it is a more complex datatype.
The type maps addresses to unsigned integers.
Mappings can be seen as hash tables [https://en.wikipedia.org/wiki/Hash_table] which are
virtually initialized such that every possible key exists and is mapped to a
value whose byte-representation is all zeros. This analogy does not go
too far, though, as it is neither possible to obtain a list of all keys of
a mapping, nor a list of all values. So either keep in mind (or
better, keep a list or use a more advanced data type) what you
added to the mapping or use it in a context where this is not needed,
like this one. The getter function created by the public keyword
is a bit more complex in this case. It roughly looks like the
following:

function balances(address _account) public view returns (uint) {
 return balances[_account];
}

As you see, you can use this function to easily query the balance of a
single account.

The line event Sent(address from, address to, uint amount); declares
a so-called “event” which is emitted in the last line of the function
send. User interfaces (as well as server applications of course) can
listen for those events being emitted on the blockchain without much
cost. As soon as it is emitted, the listener will also receive the
arguments from, to and amount, which makes it easy to track
transactions. In order to listen for this event, you would use

Coin.Sent().watch({}, '', function(error, result) {
 if (!error) {
 console.log("Coin transfer: " + result.args.amount +
 " coins were sent from " + result.args.from +
 " to " + result.args.to + ".");
 console.log("Balances now:\n" +
 "Sender: " + Coin.balances.call(result.args.from) +
 "Receiver: " + Coin.balances.call(result.args.to));
 }
})

Note how the automatically generated function balances is called from
the user interface.

The special function Coin is the
constructor which is run during creation of the contract and
cannot be called afterwards. It permanently stores the address of the person creating the
contract: msg (together with tx and block) is a magic global variable that
contains some properties which allow access to the blockchain. msg.sender is
always the address where the current (external) function call came from.

Finally, the functions that will actually end up with the contract and can be called
by users and contracts alike are mint and send.
If mint is called by anyone except the account that created the contract,
nothing will happen. On the other hand, send can be used by anyone (who already
has some of these coins) to send coins to anyone else. Note that if you use
this contract to send coins to an address, you will not see anything when you
look at that address on a blockchain explorer, because the fact that you sent
coins and the changed balances are only stored in the data storage of this
particular coin contract. By the use of events it is relatively easy to create
a “blockchain explorer” that tracks transactions and balances of your new coin.

Blockchain Basics

Blockchains as a concept are not too hard to understand for programmers. The reason is that
most of the complications (mining, hashing [https://en.wikipedia.org/wiki/Cryptographic_hash_function], elliptic-curve cryptography [https://en.wikipedia.org/wiki/Elliptic_curve_cryptography], peer-to-peer networks [https://en.wikipedia.org/wiki/Peer-to-peer], etc.)
are just there to provide a certain set of features and promises. Once you accept these
features as given, you do not have to worry about the underlying technology - or do you have
to know how Amazon’s AWS works internally in order to use it?

Transactions

A blockchain is a globally shared, transactional database.
This means that everyone can read entries in the database just by participating in the network.
If you want to change something in the database, you have to create a so-called transaction
which has to be accepted by all others.
The word transaction implies that the change you want to make (assume you want to change
two values at the same time) is either not done at all or completely applied. Furthermore,
while your transaction is applied to the database, no other transaction can alter it.

As an example, imagine a table that lists the balances of all accounts in an
electronic currency. If a transfer from one account to another is requested,
the transactional nature of the database ensures that if the amount is
subtracted from one account, it is always added to the other account. If due
to whatever reason, adding the amount to the target account is not possible,
the source account is also not modified.

Furthermore, a transaction is always cryptographically signed by the sender (creator).
This makes it straightforward to guard access to specific modifications of the
database. In the example of the electronic currency, a simple check ensures that
only the person holding the keys to the account can transfer money from it.

Blocks

One major obstacle to overcome is what, in Bitcoin terms, is called a “double-spend attack”:
What happens if two transactions exist in the network that both want to empty an account,
a so-called conflict?

The abstract answer to this is that you do not have to care. An order of the transactions
will be selected for you, the transactions will be bundled into what is called a “block”
and then they will be executed and distributed among all participating nodes.
If two transactions contradict each other, the one that ends up being second will
be rejected and not become part of the block.

These blocks form a linear sequence in time and that is where the word “blockchain”
derives from. Blocks are added to the chain in rather regular intervals - for
Ethereum this is roughly every 17 seconds.

As part of the “order selection mechanism” (which is called “mining”) it may happen that
blocks are reverted from time to time, but only at the “tip” of the chain. The more
blocks that are added on top, the less likely it is. So it might be that your transactions
are reverted and even removed from the blockchain, but the longer you wait, the less
likely it will be.

The Ethereum Virtual Machine

Overview

The Ethereum Virtual Machine or EVM is the runtime environment
for smart contracts in Ethereum. It is not only sandboxed but
actually completely isolated, which means that code running
inside the EVM has no access to network, filesystem or other processes.
Smart contracts even have limited access to other smart contracts.

Accounts

There are two kinds of accounts in Ethereum which share the same
address space: External accounts that are controlled by
public-private key pairs (i.e. humans) and contract accounts which are
controlled by the code stored together with the account.

The address of an external account is determined from
the public key while the address of a contract is
determined at the time the contract is created
(it is derived from the creator address and the number
of transactions sent from that address, the so-called “nonce”).

Regardless of whether or not the account stores code, the two types are
treated equally by the EVM.

Every account has a persistent key-value store mapping 256-bit words to 256-bit
words called storage.

Furthermore, every account has a balance in
Ether (in “Wei” to be exact) which can be modified by sending transactions that
include Ether.

Transactions

A transaction is a message that is sent from one account to another
account (which might be the same or the special zero-account, see below).
It can include binary data (its payload) and Ether.

If the target account contains code, that code is executed and
the payload is provided as input data.

If the target account is the zero-account (the account with the
address 0), the transaction creates a new contract.
As already mentioned, the address of that contract is not
the zero address but an address derived from the sender and
its number of transactions sent (the “nonce”). The payload
of such a contract creation transaction is taken to be
EVM bytecode and executed. The output of this execution is
permanently stored as the code of the contract.
This means that in order to create a contract, you do not
send the actual code of the contract, but in fact code that
returns that code when executed.

Note

While a contract is being created, its code is still empty.
Because of that, you should not call back into the
contract under construction until its constructor has
finished executing.

Gas

Upon creation, each transaction is charged with a certain amount of gas,
whose purpose is to limit the amount of work that is needed to execute
the transaction and to pay for this execution. While the EVM executes the
transaction, the gas is gradually depleted according to specific rules.

The gas price is a value set by the creator of the transaction, who
has to pay gas_price * gas up front from the sending account.
If some gas is left after the execution, it is refunded in the same way.

If the gas is used up at any point (i.e. it is negative),
an out-of-gas exception is triggered, which reverts all modifications
made to the state in the current call frame.

Storage, Memory and the Stack

Each account has a persistent memory area which is called storage.
Storage is a key-value store that maps 256-bit words to 256-bit words.
It is not possible to enumerate storage from within a contract
and it is comparatively costly to read and even more so, to modify
storage. A contract can neither read nor write to any storage apart
from its own.

The second memory area is called memory, of which a contract obtains
a freshly cleared instance for each message call. Memory is linear and can be
addressed at byte level, but reads are limited to a width of 256 bits, while writes
can be either 8 bits or 256 bits wide. Memory is expanded by a word (256-bit), when
accessing (either reading or writing) a previously untouched memory word (ie. any offset
within a word). At the time of expansion, the cost in gas must be paid. Memory is more
costly the larger it grows (it scales quadratically).

The EVM is not a register machine but a stack machine, so all
computations are performed on an area called the stack. It has a maximum size of
1024 elements and contains words of 256 bits. Access to the stack is
limited to the top end in the following way:
It is possible to copy one of
the topmost 16 elements to the top of the stack or swap the
topmost element with one of the 16 elements below it.
All other operations take the topmost two (or one, or more, depending on
the operation) elements from the stack and push the result onto the stack.
Of course it is possible to move stack elements to storage or memory,
but it is not possible to just access arbitrary elements deeper in the stack
without first removing the top of the stack.

Instruction Set

The instruction set of the EVM is kept minimal in order to avoid
incorrect implementations which could cause consensus problems.
All instructions operate on the basic data type, 256-bit words.
The usual arithmetic, bit, logical and comparison operations are present.
Conditional and unconditional jumps are possible. Furthermore,
contracts can access relevant properties of the current block
like its number and timestamp.

Message Calls

Contracts can call other contracts or send Ether to non-contract
accounts by the means of message calls. Message calls are similar
to transactions, in that they have a source, a target, data payload,
Ether, gas and return data. In fact, every transaction consists of
a top-level message call which in turn can create further message calls.

A contract can decide how much of its remaining gas should be sent
with the inner message call and how much it wants to retain.
If an out-of-gas exception happens in the inner call (or any
other exception), this will be signalled by an error value put onto the stack.
In this case, only the gas sent together with the call is used up.
In Solidity, the calling contract causes a manual exception by default in
such situations, so that exceptions “bubble up” the call stack.

As already said, the called contract (which can be the same as the caller)
will receive a freshly cleared instance of memory and has access to the
call payload - which will be provided in a separate area called the calldata.
After it has finished execution, it can return data which will be stored at
a location in the caller’s memory preallocated by the caller.

Calls are limited to a depth of 1024, which means that for more complex
operations, loops should be preferred over recursive calls.

Delegatecall / Callcode and Libraries

There exists a special variant of a message call, named delegatecall
which is identical to a message call apart from the fact that
the code at the target address is executed in the context of the calling
contract and msg.sender and msg.value do not change their values.

This means that a contract can dynamically load code from a different
address at runtime. Storage, current address and balance still
refer to the calling contract, only the code is taken from the called address.

This makes it possible to implement the “library” feature in Solidity:
Reusable library code that can be applied to a contract’s storage, e.g. in
order to implement a complex data structure.

Logs

It is possible to store data in a specially indexed data structure
that maps all the way up to the block level. This feature called logs
is used by Solidity in order to implement events.
Contracts cannot access log data after it has been created, but they
can be efficiently accessed from outside the blockchain.
Since some part of the log data is stored in bloom filters [https://en.wikipedia.org/wiki/Bloom_filter], it is
possible to search for this data in an efficient and cryptographically
secure way, so network peers that do not download the whole blockchain
(“light clients”) can still find these logs.

Create

Contracts can even create other contracts using a special opcode (i.e.
they do not simply call the zero address). The only difference between
these create calls and normal message calls is that the payload data is
executed and the result stored as code and the caller / creator
receives the address of the new contract on the stack.

Self-destruct

The only possibility that code is removed from the blockchain is
when a contract at that address performs the selfdestruct operation.
The remaining Ether stored at that address is sent to a designated
target and then the storage and code is removed from the state.

Warning

Even if a contract’s code does not contain a call to selfdestruct,
it can still perform that operation using delegatecall or callcode.

Note

The pruning of old contracts may or may not be implemented by Ethereum
clients. Additionally, archive nodes could choose to keep the contract storage
and code indefinitely.

Note

Currently external accounts cannot be removed from the state.

Introduction Bolalob III

Code Sample I

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Document</title>
</head>
<body>
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Nihil, nobis? Nisi quaerat quisquam repudiandae et non nam ipsa dolore quae. Minus laboriosam a cumque dolore aliquid voluptatibus vitae numquam tempora?
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Eius omnis, corporis fugiat aliquid asperiores veritatis impedit molestias molestiae dolores minima odio officiis. Eligendi optio perspiciatis magnam ut quia officia dignissimos.
 Lorem ipsum, dolor sit amet consectetur adipisicing elit. Recusandae officia sequi ratione minus accusamus, ipsa, tempora quos blanditiis facilis repudiandae corrupti nostrum, deserunt debitis porro quas possimus nobis consectetur vel.
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Autem perspiciatis laborum iste nesciunt nam consequuntur quaerat in optio eveniet iure facilis, id alias dolore! Mollitia natus facilis reiciendis tempore molestiae.
</body>
</html>

Code Sample II

example_function {
 // The keyword "public" makes those variables
 // readable from outside.
 address public minter;
 mapping (address => uint) public balances;

 // Events allow light clients to react to
 // changes efficiently.
 event Sent(address from, address to, uint amount);

 // This is the constructor whose code is
 // run only when the contract is created.
 constructor() public {
 minter = msg.sender;
 }

 function mint(address receiver, uint amount) public {
 if (msg.sender != minter) return;
 balances[receiver] += amount;
 }

 function send(address receiver, uint amount) public {
 if (balances[msg.sender] < amount) return;
 balances[msg.sender] -= amount;
 balances[receiver] += amount;
 emit Sent(msg.sender, receiver, amount);
 }
}

Introduction Bolalob IV

Code Sample I

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Document</title>
</head>
<body>
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Nihil, nobis? Nisi quaerat quisquam repudiandae et non nam ipsa dolore quae. Minus laboriosam a cumque dolore aliquid voluptatibus vitae numquam tempora?
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Eius omnis, corporis fugiat aliquid asperiores veritatis impedit molestias molestiae dolores minima odio officiis. Eligendi optio perspiciatis magnam ut quia officia dignissimos.
 Lorem ipsum, dolor sit amet consectetur adipisicing elit. Recusandae officia sequi ratione minus accusamus, ipsa, tempora quos blanditiis facilis repudiandae corrupti nostrum, deserunt debitis porro quas possimus nobis consectetur vel.
 Lorem ipsum dolor sit amet consectetur adipisicing elit. Autem perspiciatis laborum iste nesciunt nam consequuntur quaerat in optio eveniet iure facilis, id alias dolore! Mollitia natus facilis reiciendis tempore molestiae.
</body>
</html>

Code Sample II

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	example_function {
 // The keyword "public" makes those variables
 // readable from outside.
 address public minter;
 mapping (address => uint) public balances;

 // Events allow light clients to react to
 // changes efficiently.
 event Sent(address from, address to, uint amount);

 // This is the constructor whose code is
 // run only when the contract is created.
 constructor() public {
 minter = msg.sender;
 }

 function mint(address receiver, uint amount) public {
 if (msg.sender != minter) return;
 balances[receiver] += amount;
 }

 function send(address receiver, uint amount) public {
 if (balances[msg.sender] < amount) return;
 balances[msg.sender] -= amount;
 balances[receiver] += amount;
 emit Sent(msg.sender, receiver, amount);
 }
}

Paragraph Level Markup

Table of Contents

	Paragraph Level Markup

	Inline Markup

	Math

	Meta

	Blocks

	Literal Blocks

	Line Blocks

	Block Quotes

	Doctest Blocks

	Code Blocks

	Emphasized lines with line numbers

	Sidebar

	Code with Sidebar

	References

	Footnotes

	Citations

	Glossary

	Targets

	Directives

	Contents

	Centered text

	Images & Figures

	Images

	Figures

	Admonitions

	Topics, Sidebars, and Rubrics

	Target Footnotes

	Replacement Text

	Compound Paragraph

	Download Links

Inline Markup

Paragraphs contain text and may contain inline markup: emphasis, strong emphasis, inline literals,
standalone hyperlinks (http://www.python.org), external hyperlinks (Python [http://www.python.org/] 5), internal cross-references (example),
external hyperlinks with embedded URIs (Python web site [http://www.python.org]), footnote references
(manually numbered 1, anonymous auto-numbered 3, labeled auto-numbered 2, or symbolic *),
citation references (12), substitution references ([image: EXAMPLE]), and inline hyperlink targets
(see Targets below for a reference back to here). Character-level inline markup is also possible
(although exceedingly ugly!) in reStructuredText. Problems are indicated by |problematic|
text (generated by processing errors; this one is intentional).

Also with sphinx.ext.autodoc, which I use in the demo, I can link to test_py_module.test.Foo.
It will link you right my code documentation for it.

The default role for interpreted text is Title Reference. Here are some explicit interpreted text roles:
a PEP reference (PEP 287 [https://www.python.org/dev/peps/pep-0287]); an RFC reference (RFC 2822 [https://tools.ietf.org/html/rfc2822.html]); a subscript; a superscript;
and explicit roles for standard inline markup.

GUI labels are a useful way to indicate that Some action is to be taken by the user.
The GUI label should not run over line-height so as not to interfere with text from adjacent lines.

Key-bindings indicate that the read is to press a button on the keyboard or mouse,
for example MMB and Shift-MMB. Another useful markup to indicate a user action
is to use menuselection this can be used to show short and long menus in software.
For example, and menuselection can be seen here that breaks is too long to fit on this line.
My ‣ Software ‣ Some menu ‣ Some sub menu 1 ‣ sub menu 2.

Let’s test wrapping and whitespace significance in inline literals:
This is an example of --inline-literal --text, --including some--
strangely--hyphenated-words. Adjust-the-width-of-your-browser-window
to see how the text is wrapped. -- ---- -------- Now note the
spacing between the words of this sentence (words
should be grouped in pairs).

If the --pep-references option was supplied, there should be a live link to PEP 258 here.

Math

This is a test. Here is an equation:
.
Here is another:

You can add a link to equations like the one above :eq:`This is a label` by using :eq:.

Meta

Blocks

Literal Blocks

Literal blocks are indicated with a double-colon (“::”) at the end of
the preceding paragraph (over there -->). They can be indented:

if literal_block:
 text = 'is left as-is'
 spaces_and_linebreaks = 'are preserved'
 markup_processing = None

Or they can be quoted without indentation:

>> Great idea!
>
> Why didn't I think of that?

Line Blocks

This is a line block. It ends with a blank line.

Each new line begins with a vertical bar (“|”).

Line breaks and initial indents are preserved.

Continuation lines are wrapped portions of long lines;
they begin with a space in place of the vertical bar.

The left edge of a continuation line need not be aligned with
the left edge of the text above it.

This is a second line block.

Blank lines are permitted internally, but they must begin with a “|”.

Take it away, Eric the Orchestra Leader!

A one, two, a one two three four

Half a bee, philosophically,

must, ipso facto, half not be.

But half the bee has got to be,

vis a vis its entity. D’you see?

But can a bee be said to be

or not to be an entire bee,

when half the bee is not a bee,

due to some ancient injury?

Singing…

Block Quotes

Block quotes consist of indented body elements:

My theory by A. Elk. Brackets Miss, brackets. This theory goes
as follows and begins now. All brontosauruses are thin at one
end, much much thicker in the middle and then thin again at the
far end. That is my theory, it is mine, and belongs to me and I
own it, and what it is too.

—Anne Elk (Miss)

Doctest Blocks

>>> print 'Python-specific usage examples; begun with ">>>"'
Python-specific usage examples; begun with ">>>"
>>> print '(cut and pasted from interactive Python sessions)'
(cut and pasted from interactive Python sessions)

Code Blocks

parsed-literal test
curl -O http://someurl/release-latest.tar-gz

Code Blocks can have captions.

{
"windows": [
 {
 "panes": [
 {
 "shell_command": [
 "echo 'did you know'",
 "echo 'you can inline'"
]
 },
 {
 "shell_command": "echo 'single commands'"
 },
 "echo 'for panes'"
],
 "window_name": "long form"
 }
],
"session_name": "shorthands"
}

Emphasized lines with line numbers

	1
2
3
4
5

	def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Sidebar

Ch’ien / The Creative

Above CH’IEN THE CREATIVE, HEAVEN

Below CH’IEN THE CREATIVE, HEAVEN

The first hexagram is made up of six unbroken lines. These unbroken lines stand for the primal power,
which is light-giving, active, strong, and of the spirit. The hexagram is consistently strong in character,
and since it is without weakness, its essence is power or energy. Its image is heaven.
Its energy is represented as unrestricted by any fixed conditions in space and is therefore conceived of as motion.
Time is regarded as the basis of this motion.
Thus the hexagram includes also the power of time and the power of persisting in time, that is, duration.

The power represented by the hexagram is to be interpreted in a dual sense in terms of its action
on the universe and of its action on the world of men. In relation to the universe, the hexagram expresses the strong,
creative action of the Deity. In relation to the human world, it denotes the creative action of the holy man or sage,
of the ruler or leader of men, who through his power awakens and develops their higher nature.

Code with Sidebar

A code example

With a sidebar on the right.

References

Footnotes

	1(1,2)

	A footnote contains body elements, consistently indented by at
least 3 spaces.

This is the footnote’s second paragraph.

	2(1,2)

	Footnotes may be numbered, either manually (as in 1) or
automatically using a “#”-prefixed label. This footnote has a
label so it can be referred to from multiple places, both as a
footnote reference (2) and as a hyperlink reference
(label).

	3

	This footnote is numbered automatically and anonymously using a
label of “#” only.

	*

	Footnotes may also use symbols, specified with a “*” label.
Here’s a reference to the next footnote: †.

	†

	This footnote shows the next symbol in the sequence.

	4

	Here’s an unreferenced footnote, with a reference to a
nonexistent footnote: [5]_.

Citations

	11

	This is the citation I made, let’s make this extremely long so that we can tell that it doesn’t follow the normal responsive table stuff.

	12(1,2)

	This citation has some code blocks in it, maybe some bold and
italics too. Heck, lets put a link to a meta citation 13 too.

	13

	This citation will have two backlinks.

Here’s a reference to the above, 12, and a [nonexistent] citation.

Here is another type of citation: citation

Glossary

This is a glossary with definition terms for thing like Writing:

	Documentation

	Provides users with the knowledge they need to use something.

	Reading

	The process of taking information into ones mind through the use of eyes.

	Writing

	The process of putting thoughts into a medium for other people to read.

Targets

This paragraph is pointed to by the explicit “example” target.
A reference can be found under Inline Markup, above. Inline
hyperlink targets are also possible.

Section headers are implicit targets, referred to by name. See
Targets, which is a subsection of `Body Elements`_.

Explicit external targets are interpolated into references such as “Python [http://www.python.org/] 5”.

Targets may be indirect and anonymous. Thus this phrase may also
refer to the Targets section.

Here’s a `hyperlink reference without a target`_, which generates an error.

Directives

Contents

These are just a sample of the many reStructuredText Directives. For others, please see:
http://docutils.sourceforge.net/docs/ref/rst/directives.html.

Centered text

You can create a statement with centered text with .. centered::

This is centered text!

Images & Figures

Images

An image directive (also clickable – a hyperlink reference):

[image: testing/static/Geniee_NativeAds_300x50.PNG]

Figures

[image: reStructuredText, the markup syntax]
A figure is an image with a caption and/or a legend:

	re

	Revised, revisited, based on ‘re’ module.

	Structured

	Structure-enhanced text, structuredtext.

	Text

	Well it is, isn’t it?

This paragraph is also part of the legend.

A figure directive with center alignment

[image: testing/static/Geniee_NativeAds_300x50.PNG]
This caption should be centered.

Admonitions

Attention

Directives at large.

Caution

Don’t take any wooden nickels.

Danger

Mad scientist at work!

Error

Does not compute.

Hint

It’s bigger than a bread box.

Important

	Wash behind your ears.

	Clean up your room.

	Including the closet.

	The bathroom too.

	Take the trash out of the bathroom.

	Clean the sink.

	Call your mother.

	Back up your data.

Note

This is a note.
Equations within a note:
.

Tip

15% if the service is good.

	Example

	Thing1

	Thing2

	Thing3

Warning

Strong prose may provoke extreme mental exertion.
Reader discretion is strongly advised.

And, by the way…

You can make up your own admonition too.

Topics, Sidebars, and Rubrics

Sidebar Title

Optional Subtitle

This is a sidebar. It is for text outside the flow of the main
text.

This is a rubric inside a sidebar

Sidebars often appears beside the main text with a border and
background color.

Topic Title

This is a topic.

This is a rubric

Target Footnotes

	5(1,2,3)

	http://www.python.org/

Replacement Text

I recommend you try Python, the best language around [http://www.python.org/] 5.

Compound Paragraph

This paragraph contains a literal block:

Connecting... OK
Transmitting data... OK
Disconnecting... OK

and thus consists of a simple paragraph, a literal block, and
another simple paragraph. Nonetheless it is semantically one
paragraph.

This construct is called a compound paragraph and can be produced
with the “compound” directive.

Download Links

This long long long long long long long long long long long long long long long download link should be blue, normal weight text with a leading icon, and should wrap white-spaces

 _static/comment-bright.png

_images/github_bolalob.png
©.GYMT/ boalob e wsar [[o (1m0

I L e SR ———
[r——— -
D25 Yt - -
| e [- |
[P — P— i
. B o o s |8
oS, e

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/build_gradle_port1.png
bootRun {
umArgs - [-XX:PermSize-256a", "-XX:MaxPermSize=S12n", -Xm204Ba", "-DSErver.port-8081"]
‘addResources - true.

b

_images/build_gradle_port2.png
bootRun {
JumArgs - [*-XK:Permsize=256n’"
‘addResources - true

XX:MaxPernSize=S1n", "-Xmc204sn",

_images/bolalob_logo.png
BOLAL ¥B

_images/build_gradle_port3.png
‘bootRun {
JumArgs - ["-XX:PermSize=2sen’",
‘addResources - true

XX:MaxPernsize=512n", "-Xm284gn", "-Dserver.port=g083"]

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Getting Started

 		
 About Bolalob

 		
 Prerequisite bolalob environment

 		
 Windows

 		
 Linux

 		
 MacOS

 		
 How to running project in your localhost

 		
 How to running multiple projects in one server localhost

_static/up-pressed.png

_static/up.png

_static/plus.png

